Exploiting the mutanome for tumor vaccination.

نویسندگان

  • John C Castle
  • Sebastian Kreiter
  • Jan Diekmann
  • Martin Löwer
  • Niels van de Roemer
  • Jos de Graaf
  • Abderraouf Selmi
  • Mustafa Diken
  • Sebastian Boegel
  • Claudia Paret
  • Michael Koslowski
  • Andreas N Kuhn
  • Cedrik M Britten
  • Christoph Huber
  • Ozlem Türeci
  • Ugur Sahin
چکیده

Multiple genetic events and subsequent clonal evolution drive carcinogenesis, making disease elimination with single-targeted drugs difficult. The multiplicity of gene mutations derived from clonal heterogeneity therefore represents an ideal setting for multiepitope tumor vaccination. Here, we used next generation sequencing exome resequencing to identify 962 nonsynonymous somatic point mutations in B16F10 murine melanoma cells, with 563 of those mutations in expressed genes. Potential driver mutations occurred in classical tumor suppressor genes and genes involved in proto-oncogenic signaling pathways that control cell proliferation, adhesion, migration, and apoptosis. Aim1 and Trrap mutations known to be altered in human melanoma were included among those found. The immunogenicity and specificity of 50 validated mutations was determined by immunizing mice with long peptides encoding the mutated epitopes. One-third of these peptides were found to be immunogenic, with 60% in this group eliciting immune responses directed preferentially against the mutated sequence as compared with the wild-type sequence. In tumor transplant models, peptide immunization conferred in vivo tumor control in protective and therapeutic settings, thereby qualifying mutated epitopes that include single amino acid substitutions as effective vaccines. Together, our findings provide a comprehensive picture of the mutanome of B16F10 melanoma which is used widely in immunotherapy studies. In addition, they offer insight into the extent of the immunogenicity of nonsynonymous base substitution mutations. Lastly, they argue that the use of deep sequencing to systematically analyze immunogenicity mutations may pave the way for individualized immunotherapy of cancer patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutanome Engineered RNA Immunotherapy: Towards Patient-Centered Tumor Vaccination

Advances in nucleic acid sequencing technologies have revolutionized the field of genomics, allowing the efficient targeting of mutated neoantigens for personalized cancer vaccination. Due to their absence during negative selection of T cells and their lack of expression in healthy tissue, tumor mutations are considered as optimal targets for cancer immunotherapy. Preclinical and early clinical...

متن کامل

Targeting the tumor mutanome for personalized vaccination therapy

Next generation sequencing enables identification of immunogenic tumor mutations targetable by individualized vaccines. In the B16F10 melanoma system as pre-clinical proof-of-concept model, we found a total of 563 non-synonymous expressed somatic mutations. Of the mutations we tested, one third were immunogenic. Immunization conferred in vivo tumor control, qualifying mutated epitopes as source...

متن کامل

Microenvironment and Immunology Exploiting the Mutanome for Tumor Vaccination

Multiple genetic events and subsequent clonal evolution drive carcinogenesis, making disease eliminationwith single-targeted drugs difficult. The multiplicity of gene mutations derived from clonal heterogeneity therefore represents an ideal setting for multiepitope tumor vaccination. Here, we used next generation sequencing exome resequencing to identify 962 nonsynonymous somatic point mutation...

متن کامل

Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines.

Somatic mutations binding to the patient's MHC and recognized by autologous T cells (neoepitopes) are ideal cancer vaccine targets. They combine a favorable safety profile due to a lack of expression in healthy tissues with a high likelihood of immunogenicity, as T cells recognizing neoepitopes are not shaped by central immune tolerance. Proteins mutated in cancer (neoantigens) shared by patien...

متن کامل

The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy

DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2012